Endothelial calcium firing mediates the extravasation of metastatic tumor cells

内皮钙放电介导转移性肿瘤细胞的外渗

阅读:6
作者:Marina Peralta, Amandine Dupas, Annabel Larnicol, Olivier Lefebvre, Ruchi Goswami, Tristan Stemmelen, Anne Molitor, Raphael Carapito, Salvatore Girardo, Naël Osmani, Jacky G Goetz

Abstract

Metastatic dissemination is driven by genetic, biochemical, and biophysical cues that favor the distant colonization of organs and the formation of life-threatening secondary tumors. We have previously demonstrated that endothelial cells (ECs) actively remodel during extravasation by enwrapping arrested tumor cells (TCs) and extruding them from the vascular lumen while maintaining perfusion. In this work, we dissect the cellular and molecular mechanisms driving endothelial remodeling. Using high-resolution intravital imaging in zebrafish embryos, we demonstrate that the actomyosin network of ECs controls tissue remodeling and subsequent TC extravasation. Furthermore, we uncovered that this cytoskeletal remodeling is driven by altered endothelial-calcium (Ca2+) signaling caused by arrested TCs. Accordingly, we demonstrated that the inhibition of voltage-dependent calcium L-type channels impairs extravasation. Lastly, we identified P2X4, TRP, and Piezo1 mechano-gated Ca2+ channels as key mediators of the process. These results further highlight the central role of endothelial remodeling during the extravasation of TCs and open avenues for successful therapeutic targeting.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。