Massively parallel sequencing identifies the gene Megf8 with ENU-induced mutation causing heterotaxy

大规模平行测序鉴定出因 ENU 诱发突变而导致异位的基因 Megf8

阅读:6
作者:Zhen Zhang, Deanne Alpert, Richard Francis, Bishwanath Chatterjee, Qing Yu, Terry Tansey, Steven L Sabol, Cheng Cui, Yongli Bai, Maxim Koriabine, Yuko Yoshinaga, Jan-Fang Cheng, Feng Chen, Joel Martin, Wendy Schackwitz, Teresa M Gunn, Kenneth L Kramer, Pieter J De Jong, Len A Pennacchio, Cecilia W L

Abstract

Forward genetic screens with ENU (N-ethyl-N-nitrosourea) mutagenesis can facilitate gene discovery, but mutation identification is often difficult. We present the first study in which an ENU-induced mutation was identified by massively parallel DNA sequencing. This mutation causes heterotaxy and complex congenital heart defects and was mapped to a 2.2-Mb interval on mouse chromosome 7. Massively parallel sequencing of the entire 2.2-Mb interval identified 2 single-base substitutions, one in an intergenic region and a second causing replacement of a highly conserved cysteine with arginine (C193R) in the gene Megf8. Megf8 is evolutionarily conserved from human to fruit fly, and is observed to be ubiquitously expressed. Morpholino knockdown of Megf8 in zebrafish embryos resulted in a high incidence of heterotaxy, indicating a conserved role in laterality specification. Megf8(C193R) mouse mutants show normal breaking of symmetry at the node, but Nodal signaling failed to be propagated to the left lateral plate mesoderm. Videomicroscopy showed nodal cilia motility, which is required for left-right patterning, is unaffected. Although this protein is predicted to have receptor function based on its amino acid sequence, surprisingly confocal imaging showed it is translocated into the nucleus, where it is colocalized with Gfi1b and Baf60C, two proteins involved in chromatin remodeling. Overall, through the recovery of an ENU-induced mutation, we uncovered Megf8 as an essential regulator of left-right patterning.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。