A genome-integrated massively parallel reporter assay reveals DNA sequence determinants of cis-regulatory activity in neural cells

基因组整合的大规模并行报告分析揭示了神经细胞中顺式调控活性的 DNA 序列决定因素

阅读:8
作者:Brett B Maricque, Joseph D Dougherty, Barak A Cohen

Abstract

Recent large-scale genomics efforts to characterize the cis-regulatory sequences that orchestrate genome-wide expression patterns have produced impressive catalogues of putative regulatory elements. Most of these sequences have not been functionally tested, and our limited understanding of the non-coding genome prevents us from predicting which sequences are bona fide cis-regulatory elements. Recently, massively parallel reporter assays (MPRAs) have been deployed to measure the activity of putative cis-regulatory sequences in several biological contexts, each with specific advantages and distinct limitations. We developed LV-MPRA, a novel lentiviral-based, massively parallel reporter gene assay, to study the function of genome-integrated regulatory elements in any mammalian cell type; thus, making it possible to apply MPRAs in more biologically relevant contexts. We measured the activity of 2,600 sequences in U87 glioblastoma cells and human neural progenitor cells (hNPCs) and explored how regulatory activity is encoded in DNA sequence. We demonstrate that LV-MPRA can be applied to estimate the effects of local DNA sequence and regional chromatin on regulatory activity. Our data reveal that primary DNA sequence features, such as GC content and dinucleotide composition, accurately distinguish sequences with high activity from sequences with low activity in a full chromosomal context, and may also function in combination with different transcription factor binding sites to determine cell type specificity. We conclude that LV-MPRA will be an important tool for identifying cis-regulatory elements and stimulating new understanding about how the non-coding genome encodes information.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。