CCAAT displacement protein regulates nuclear factor-kappa beta-mediated chemokine transcription in melanoma cells

CCAAT 置换蛋白调节黑色素瘤细胞中的核因子 κβ 介导的趋化因子转录

阅读:10
作者:Yukiko Ueda, Yingjun Su, Ann Richmond

Abstract

Members of the nuclear factor-kappa beta (NF-kappaB) family maintain cellular homeostasis by enhancing the transcription of genes involved in inflammation, immune response, cell proliferation, and apoptosis. Melanoma tumor cells often express inflammatory mediators through enhanced activation of NF-kappaB. The NF-kappaB activation appears to result from the enhancer formation including NF-kappaB and lysine acetyl transferases such as p300, CREB (cyclic AMP-responsive element binding protein)-binding protein (CBP), and/or p300/CBP associating factor (PCAF). We observed that proteins expressed by Hs294T metastatic melanoma cells are highly acetylated compared with normal melanocytes, and dominant-negative PCAF reduced the basal and tumor necrosis factor-alpha-stimulated transcriptional activity of NF-kappaB. The promoter activity of NF-kappaB-regulated chemokines was also reduced by the expression of dominant-negative PCAF. The promoters of these chemokines contain a CCAAT displacement protein (CDP)-binding site near the NF-kappaB element. compared with vector-transduced cells, in CDP-transduced Hs294T cells: (i) over-expressed CDP bound efficiently to PCAF, (ii) tumor necrosis factor-alpha-stimulated chemokine expression and NF-kappaB-mediated transcription were reduced, and (iii) the binding of CBP to Rel A was reduced. These data suggest that CDP inhibits cytokine-induced NF-kappaB-regulated chemokine transcription. This study contributes to our understanding of the role of CDP in an enhanceosome of NF-kappaB-mediated chemokine transcription in human melanoma cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。