Significance
Hydrogen sulfide, as a gaseous messenger, plays a crucial role in many physiological and pathological conditions. Recent studies about functions of H2S suggests H2S-based therapy could be promising therapeutic strategy for many diseases, such as cardiovascular disease, arthritis, and inflammatory bowel disease. Although many H2S donors have been developed and applied for biomedical studies, most of H2S donors have the shortage that the H2S release is either too fast or uncontrollable, which poorly mimic the biological generation of H2S. By simply combining electrospinning technique with our designed biological thiols activated H2S donor, NSHD1, we fabricated H2S releasing microfibers (H2S-fibers). This H2S-fibers significantly prolonged the releasing time compared to H2S donor alone. By adjusting the electrospinning parameters, tunable releasing profiles can be achieved. Moreover, the H2S fibers can protect cardiac myoblasts H9c2 and fibroblast NIH 3T3 from oxidative damage and support their proliferation as cellular scaffolds. To our knowledge, this is the first report of electrospun fibers with H2S releasing capacity. We anticipate this H2S-releasing scaffold will have great potential for biomedical applications.
Statement of significance
Hydrogen sulfide, as a gaseous messenger, plays a crucial role in many physiological and pathological conditions. Recent studies about functions of H2S suggests H2S-based therapy could be promising therapeutic strategy for many diseases, such as cardiovascular disease, arthritis, and inflammatory bowel disease. Although many H2S donors have been developed and applied for biomedical studies, most of H2S donors have the shortage that the H2S release is either too fast or uncontrollable, which poorly mimic the biological generation of H2S. By simply combining electrospinning technique with our designed biological thiols activated H2S donor, NSHD1, we fabricated H2S releasing microfibers (H2S-fibers). This H2S-fibers significantly prolonged the releasing time compared to H2S donor alone. By adjusting the electrospinning parameters, tunable releasing profiles can be achieved. Moreover, the H2S fibers can protect cardiac myoblasts H9c2 and fibroblast NIH 3T3 from oxidative damage and support their proliferation as cellular scaffolds. To our knowledge, this is the first report of electrospun fibers with H2S releasing capacity. We anticipate this H2S-releasing scaffold will have great potential for biomedical applications.
