Optimization and mechanisms of rapid adsorptive removal of chromium (VI) from wastewater using industrial waste derived nanoparticles

利用工业废弃物衍生的纳米颗粒快速吸附去除废水中的六价铬的优化及机理

阅读:7
作者:Hala M Hamadeen, Elsayed A Elkhatib, Mohamed L Moharem

Abstract

Nowadays, the existence of metal ions in the environment like chromium (VI) is of significant worry because of its high toxicity to many life forms. Therefore, in this study, an inexpensive and eco-friendly nano-adsorbent was produced from the waste of drinking water industry for effective elimination of Cr (VI) from wastewater. The mineralogical and morphological characterization and compositions of the bulk and nano- adsorbents were performed. The adsorption capabilities of nWTRs for Cr(VI) under different experimental conditions of adsorbent dosage, time, Cr (VI) concentration, solution pH, and competitive ions were investigated. The nWTRs adsorbent exhibits very rapid adsorption potential (92%) for Cr (VI) within the first 15 min. Langmuir model showed high predictive capability for describing Cr (VI) sorption equilibrium data. The estimated maximum sorption capacity (qmax) of nWTRs and bWTRs was found to be 40.65 mg g-1 and 2.78 mg g-1 respectively. The sorption kinetics data of Cr (VI) were perfectly fitted to the model of second-order kinetics. High immobilization capability of nWTRs for sorbed Cr (VI) is evident as most of adsorbed Cr (VI) was associated with the residual fraction. The nWTRs efficiency of Cr (VI) removal from wastewater using batch and column techniques were 98.12 and 96.86% respectively. Electrostatic interactions, outer sphere complexation and pore filling are the main mechanisms suggested for binding of Cr(VI) with functional groups of nWTRs. This study demonstrates that the green low-cost nWTRs have the potential to decontaminate industrial wastewater effluents containing Cr (VI).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。