Significance
In order to effectively accumulate and penetrate the PDA that is poorly vascularized and enriched with dense fibrotic stroma, the size of nanomedicine has to be well controlled. Here, we reported an immunochemotherapy regimen based on co-delivery of GEM, PTX and IDO1 inhibitor NLG919 through an ultra-small sized GEM-based nanocarrier (PGEM). We demonstrated that the PGEM carrier was effective in accumulating and penetrating into PDA tumors. Besides, PGEM co-loaded with PTX and NLG9 induced an improved anti-tumor immune response and was highly efficacious in inhibiting tumor growth as well as in prolonging the survival rate in PANC02 xenograft model. Our work represents a potential strategy for enhancing PDA tumor penetration and immunochemotherapy.
Statement of significance
In order to effectively accumulate and penetrate the PDA that is poorly vascularized and enriched with dense fibrotic stroma, the size of nanomedicine has to be well controlled. Here, we reported an immunochemotherapy regimen based on co-delivery of GEM, PTX and IDO1 inhibitor NLG919 through an ultra-small sized GEM-based nanocarrier (PGEM). We demonstrated that the PGEM carrier was effective in accumulating and penetrating into PDA tumors. Besides, PGEM co-loaded with PTX and NLG9 induced an improved anti-tumor immune response and was highly efficacious in inhibiting tumor growth as well as in prolonging the survival rate in PANC02 xenograft model. Our work represents a potential strategy for enhancing PDA tumor penetration and immunochemotherapy.
