Ca(2+) channel inactivation heterogeneity reveals physiological unbinding of auxiliary beta subunits

Ca(2+) 通道失活异质性揭示辅助β亚基的生理性解离

阅读:5
作者:S Restituito, T Cens, M Rousset, P Charnet

Abstract

Voltage gated Ca(2+) channel (VGCC) auxiliary beta subunits increase membrane expression of the main pore-forming alpha(1) subunits and finely tune channel activation and inactivation properties. In expression studies, co-expression of beta subunits also reduced neuronal Ca(2+) channel regulation by heterotrimeric G protein. Biochemical studies suggest that VGCC beta subunits and G protein betagamma can compete for overlapping interaction sites on VGCC alpha(1) subunits, suggesting a dynamic association of these subunits with alpha(1). In this work we have analyzed the stability of the alpha(1)/beta association under physiological conditions. Regulation of the alpha(1A) Ca(2+) channel inactivation properties by beta(1b) and beta(2a) subunits had two major effects: a shift in voltage-dependent inactivation (E(in)), and an increase of the non-inactivating current (R(in)). Unexpectedly, large variations in magnitude of the effects were recorded on E(in), when beta(1b) was expressed, and R(in), when beta(2a) was expressed. These variations were not proportional to the current amplitude, and occurred at similar levels of beta subunit expression. beta(2a)-induced variations of R(in) were, however, inversely proportional to the magnitude of G protein block. These data underline the two different mechanisms used by beta(1b) and beta(2a) to regulate channel inactivation, and suggest that the VGCC beta subunit can unbind the alpha1 subunit in physiological situations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。