Conclusions
Ru(quin)2 emerges as a potent candidate for BC treatment, with multiple mechanisms of action involving apoptosis, autophagy, and cell cycle arrest. Further studies are warranted to elucidate its detailed molecular mechanisms and evaluate its therapeutic potential in vivo, moving toward clinical applications for both ER-positive and triple-negative BC management.
Results
Ru(quin)2 demonstrated dose-dependent cytotoxicity, with IC50 values of 48.3 μM in T47D cells and 45.5 μM in MDA-MB-231 cells. Its cytotoxic effects are primarily driven by apoptosis, as shown by increased BAX expression, enhanced caspase-3 activity, reduced Aurora B kinase levels, and elevated histone release. Ru(quin)2 also induced autophagy, evidenced by LC3-I to LC3-II conversion and reduced SQSTM1, partially mediated through MAPK signaling. Furthermore, Ru(quin)2 induced G0/G1 cell cycle arrest by downregulating cyclin D1, CDK4, and CDK6, alongside upregulation of the CDK inhibitor p21. Conclusions: Ru(quin)2 emerges as a potent candidate for BC treatment, with multiple mechanisms of action involving apoptosis, autophagy, and cell cycle arrest. Further studies are warranted to elucidate its detailed molecular mechanisms and evaluate its therapeutic potential in vivo, moving toward clinical applications for both ER-positive and triple-negative BC management.
