Metabolic dysfunction in mice with adipocyte-specific ablation of the adenosine A2A receptor

脂肪细胞特异性腺苷 A2A 受体消融导致小鼠代谢功能障碍

阅读:8
作者:Narendra Verma, Luce Perie, Michele Silvestro, Anupama Verma, Bruce N Cronstein, Bhama Ramkhelawon, Elisabetta Mueller

Abstract

It has been well established that adenosine plays a key role in the control of inflammation through G protein coupled receptors and recently shown that it can regulate thermogenesis. Here we investigated the specific requirements of the adenosine A2A receptor (A2AR) in mature adipocytes for thermogenic functionality and metabolic homeostasis. We generated fat tissue-specific adenosine A2AR KO mice to assess the influence of signaling through this receptor on brown and beige fat functionality, obesity, insulin sensitivity, inflammation, and liver function. Fat-specific A2AR KO and WT littermate mice were compared for potential differences in cold tolerance and energy metabolism. In addition, we measured glucose metabolism, AT inflammation, and liver phenotypes in mice of the two genotypes after exposure to a diet rich in fat. Our results provide novel evidence indicating that loss of the adenosine A2AR specifically in adipocytes is associated with cold intolerance and decreased oxygen consumption. Furthermore, mice with fat specific ablation of the A2AR exposed to a diet rich in fat showed increased propensity to obesity, decreased insulin sensitivity, elevated adipose tissue inflammation, and hepato-steatosis and hepato-steatitis. Overall, our data provide novel evidence that A2AR in mature adipocytes safeguards metabolic homeostasis, suggesting the possibility of targeting this receptor selectively in fat for the treatment of metabolic disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。