Potassium Current Is Not Affected by Long-Term Exposure to Ghrelin or GHRP-6 in Somatotropes GC Cells

生长激素 GC 细胞中的钾电流不受长期暴露于生长素释放肽或 GHRP-6 的影响

阅读:6
作者:Belisario Domínguez Mancera, Eduardo Monjaraz Guzman, Jorge L V Flores-Hernández, Manuel Barrientos Morales, José M Martínez Hernandez, Antonio Hernández Beltran, Patricia Cervantes Acosta

Abstract

Ghrelin is a growth hormone (GH) secretagogue (GHS) and GHRP-6 is a synthetic peptide analogue; both act through the GHS receptor. GH secretion depends directly on the intracellular concentration of Ca(2+); this is determined from the intracellular reserves and by the entrance of Ca(2+) through the voltage-dependent calcium channels, which are activated by the membrane depolarization. Membrane potential is mainly determined by K(+) channels. In the present work, we investigated the effect of ghrelin (10 nM) or GHRP-6 (100 nM) for 96 h on functional expression of voltage-dependent K(+) channels in rat somatotropes: GC cell line. Physiological patch-clamp whole-cell recording was used to register the K(+) currents. With Cd(2+) (1 mM) and tetrodotoxin (1 μ m) in the bath solution recording, three types of currents were characterized on the basis of their biophysical and pharmacological properties. GC cells showed a K(+) current with a transitory component (I A) sensitive to 4-aminopyridine, which represents ~40% of the total outgoing current; a sustained component named delayed rectifier (I K), sensitive to tetraethylammonium; and a third type of K(+) current was recorded at potentials more negative than -80 mV, permitting the entrance of K(+) named inward rectifier (KIR). Chronic treatment with ghrelin or GHRP-6 did not modify the functional expression of K(+) channels, without significant changes (P < 0.05) in the amplitudes of the three currents observed; in addition, there were no modifications in their biophysical properties and kinetic activation or inactivation.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。