A phantom for visualization of three-dimensional drug release by ultrasound-induced mild hyperthermia

超声诱导温和热疗三维药物释放可视化模型

阅读:9
作者:Chun-Yen Lai, Dustin Kruse, Jai Woong Seo, Azadeh Kheirolomoom, Katherine W Ferrara

Conclusions

The combination of LTSLs encapsulating a fluorescent dye and an optically transparent phantom is useful for visualizing and modeling drug release in vitro following ultrasound-induced mild hyperthermia. The coupled temperature simulation and dye-diffusion simulation tools were validated with the experimental system and can be used to optimize the thermal dose and spatial and temporal dye release pattern.

Methods

Agarose powder, regular evaporated milk, Dulbecco's phosphate-buffered saline (DPBS), n-propanol, and silicon carbide powder were homogeneously mixed with low temperature sensitive liposomes (LTSLs) loaded with a self-quenched near-infrared (NIR) fluorescent dye. A dual-mode linear array ultrasound transducer was used for insonation at 1.54 MHz with a total acoustic power and acoustic pressure of 2.0 W and 1.5 MPa, respectively. After insonation, the dye release pattern in the phantom was quantified based on optical images, and the three-dimensional release profile was reconstructed and analyzed. A finite-difference time-domain-based algorithm was developed to simulate both the temperature distribution and spatial dye diffusion as a function of time. Finally, the simulated dye diffusion patterns were compared to experimental measurements.

Purpose

Ultrasound-induced mild hyperthermia has advantages for noninvasive, localized and controlled drug delivery. In this study, a tissue-mimicking agarose-based phantom with a thermally sensitive indicator was developed for studying the spatial drug delivery profile using ultrasound-induced mild hyperthermia.

Results

Self-quenching of the fluorescent dye in DPBS was substantial at a concentration of 6.25×10(-2) mM or greater. The transition temperature of LTSLs in the phantom was 35 °C, and the release reached 90% at 37 °C. The simulated temperature for hyperthermia correlated with the thermocouple measurements with a mean error between 0.03±0.01 and 0.06±0.02 °C. The R2 value between the experimental and simulated spatial extent of the dye diffusion, defined by the half-peak level in the elevation, lateral and depth directions, was 0.99 (slope=1.08), 0.95 (slope=0.99), and 0.80 (slope=1.04), respectively, indicating the experimental and simulated dye release profiles were similar. Conclusions: The combination of LTSLs encapsulating a fluorescent dye and an optically transparent phantom is useful for visualizing and modeling drug release in vitro following ultrasound-induced mild hyperthermia. The coupled temperature simulation and dye-diffusion simulation tools were validated with the experimental system and can be used to optimize the thermal dose and spatial and temporal dye release pattern.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。