A positive feedback loop formed by NGFR and FOXP3 contributes to the resistance of non-small cell lung cancer to icotinib

NGFR 和 FOXP3 形成的正反馈回路导致非小细胞肺癌对埃克替尼产生耐药性

阅读:7
作者:Jun Huang #, Qiuhua Yu #, Yanjuan Zhou, Ying Chu, Feng Jiang, Xiaobo Zhu, Junjie Zhang, Qiang Wang

Background

The study was aimed to investigate the mechanisms causing acquired chemoresistance to icotinib, an epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), in non-small cell lung cancer (NSCLC).

Conclusions

NGFR, AKT and FOXP3 form a positive feedback loop, by which the abilities of NGFR and FOXP3 on inducing icotinib resistance are further enhanced. We believe that NGFR and FOXP3 might be novel therapeutic targets in NSCLC.

Methods

Three wildtype NSCLC cell lines were used to produce icotinib-resistant (IR) cell lines. Real-time PCR and western blot assays were used to detect the mRNA and protein levels of nerve growth factor receptor (NGFR) and forkhead box P3 (FOXP3). MTT assay was used to detect the viability of cells. Luciferase activity and chromatin immunoprecipitation (ChIP) assays were used to detect the transactivation activity of FOXP3.

Results

NGFR and FOXP3 were dramatically increased in three IR NSCLC cell lines, and both proteins were required for induction of icotinib resistance. NGFR-induced icotinib resistance was partially related to activation of AKT, a well-known chemoresistance inducer in many tumor types. Activated AKT could induce the expression of FOXP3 which further induce icotinib through transactivating NGFR expression by binding to its promoter. In addition, the inducing of FOXP3 could also induce icotinib resistance solely. Conclusions: NGFR, AKT and FOXP3 form a positive feedback loop, by which the abilities of NGFR and FOXP3 on inducing icotinib resistance are further enhanced. We believe that NGFR and FOXP3 might be novel therapeutic targets in NSCLC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。