CoCo-ST: Comparing and Contrasting Spatial Transcriptomics data sets using graph contrastive learning

CoCo-ST:使用图形对比学习比较和对比空间转录组学数据集

阅读:6
作者:Muhammad Aminu, Bo Zhu, Natalie Vokes, Hong Chen, Lingzhi Hong, Jianrong Li, Junya Fujimoto, Yuqui Yang, Tao Wang, Bo Wang, Alissa Poteete, Monique B Nilsson, Xiuning Le, Cascone Tina, David Jaffray, Nick Navin, Lauren A Byers, Don Gibbons, John Heymach, Ken Chen, Chao Cheng, Jianjun Zhang, Jia Wu2

Abstract

Traditional feature dimension reduction methods have been widely used to uncover biological patterns or structures within individual spatial transcriptomics data. However, these methods are designed to yield feature representations that emphasize patterns or structures with dominant high variance, such as the normal tissue spatial pattern in a precancer setting. Consequently, they may inadvertently overlook patterns of interest that are potentially masked by these high-variance structures. Herein we present our graph contrastive feature representation method called CoCo-ST (Comparing and Contrasting Spatial Transcriptomics) to overcome this limitation. By incorporating a background data set representing normal tissue, this approach enhances the identification of interesting patterns in a target data set representing precancerous tissue. Simultaneously, it mitigates the influence of dominant common patterns shared by the background and target data sets. This enables discerning biologically relevant features crucial for capturing tissue-specific patterns, a capability we showcased through the analysis of serial mouse precancerous lung tissue samples.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。