TRPM7 activity drives human CD4 T-cell activation and differentiation in a magnesium dependent manner

TRPM7 活性以镁依赖的方式驱动人类 CD4 T 细胞活化和分化

阅读:8
作者:Kilian Hoelting, Anna Madlmayr, Birgit Hoeger, Dorothea Lewitz, Marius Weng, Tanja Haider, Michelle Duggan, Rylee Ross, F David Horgen, Markus Sperandio, Alexander Dietrich, Thomas Gudermann, Susanna Zierler

Abstract

T lymphocyte activation is a crucial process in the regulation of innate and adaptive immune responses. The ion channel-kinase TRPM7 has previously been implicated in cellular Mg2+ homeostasis, proliferation, and immune cell modulation. Here, we show that pharmacological and genetic silencing of TRPM7 leads to diminished human CD4 T-cell activation and proliferation following TCR mediated stimulation. In both primary human CD4 T cells and CRISPR/Cas-9 engineered Jurkat T cells, loss of TRPM7 led to altered Mg2+ homeostasis, Ca2+ signaling, reduced NFAT translocation, decreased IL-2 secretion and ultimately diminished proliferation and differentiation. While the activation of primary human CD4 T cells was dependent on TRPM7, polarization of naïve CD4 T cells into regulatory T cells (Treg) was not. Taken together, these results highlight TRPM7 as a key protein of cellular Mg2+ homeostasis and CD4 T-cell activation. Its role in lymphocyte activation suggests therapeutic potential for TRPM7 in numerous T-cell mediated diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。