Off-Line Multidimensional Liquid Chromatography and Auto Sampling Result in Sample Loss in LC/LC-MS/MS

离线多维液相色谱和自动取样导致 LC/LC-MS/MS 中的样品损失

阅读:5
作者:Sameh Magdeldin, James J Moresco, Tadashi Yamamoto, John R Yates 3rd

Abstract

Large-scale proteomics often employs two orthogonal separation methods to fractionate complex peptide mixtures. Fractionation can involve ion exchange separation coupled to reversed-phase separation or, more recently, two reversed-phase separations performed at different pH values. When multidimensional separations are combined with tandem mass spectrometry for protein identification, the strategy is often referred to as multidimensional protein identification technology (MudPIT). MudPIT has been used in either an automated (online) or manual (offline) format. In this study, we evaluated the performance of different MudPIT strategies by both label-free and tandem mass tag (TMT) isobaric tagging. Our findings revealed that online MudPIT provided more peptide/protein identifications and higher sequence coverage than offline platforms. When employing an off-line fractionation method with direct loading of samples onto the column from an eppendorf tube via a high-pressure device, a 5.3% loss in protein identifications is observed. When off-line fractionated samples are loaded via an autosampler, a 44.5% loss in protein identifications is observed compared with direct loading of samples onto a triphasic capillary column. Moreover, peptide recovery was significantly lower after offline fractionation than in online fractionation. Signal-to-noise (S/N) ratio, however, was not significantly altered between experimental groups. It is likely that offline sample collection results in stochastic peptide loss due to noncovalent adsorption to solid surfaces. Therefore, the use of the offline approaches should be considered carefully when processing minute quantities of valuable samples.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。