Targeting protein-ligand neosurfaces with a generalizable deep learning tool

使用可通用的深度学习工具靶向蛋白质-配体新表面

阅读:5
作者:Anthony Marchand #, Stephen Buckley #, Arne Schneuing #, Martin Pacesa, Maddalena Elia, Pablo Gainza, Evgenia Elizarova, Rebecca M Neeser, Pao-Wan Lee, Luc Reymond, Yangyang Miao, Leo Scheller, Sandrine Georgeon, Joseph Schmidt, Philippe Schwaller, Sebastian J Maerkl, Michael Bronstein, Bruno E Corr

Abstract

Molecular recognition events between proteins drive biological processes in living systems1. However, higher levels of mechanistic regulation have emerged, in which protein-protein interactions are conditioned to small molecules2-5. Despite recent advances, computational tools for the design of new chemically induced protein interactions have remained a challenging task for the field6,7. Here we present a computational strategy for the design of proteins that target neosurfaces, that is, surfaces arising from protein-ligand complexes. To develop this strategy, we leveraged a geometric deep learning approach based on learned molecular surface representations8,9 and experimentally validated binders against three drug-bound protein complexes: Bcl2-venetoclax, DB3-progesterone and PDF1-actinonin. All binders demonstrated high affinities and accurate specificities, as assessed by mutational and structural characterization. Remarkably, surface fingerprints previously trained only on proteins could be applied to neosurfaces induced by interactions with small molecules, providing a powerful demonstration of generalizability that is uncommon in other deep learning approaches. We anticipate that such designed chemically induced protein interactions will have the potential to expand the sensing repertoire and the assembly of new synthetic pathways in engineered cells for innovative drug-controlled cell-based therapies10.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。