Asymmetric dimethylarginine induces maladaptive function of the blood-brain barrier

不对称二甲基精氨酸诱导血脑屏障功能适应不良

阅读:6
作者:Tetyana P Buzhdygan, Servio H Ramirez, Miroslav N Nenov

Abstract

Growing body of evidence suggests that cardiovascular risk factor, asymmetric dimethylarginine (ADMA), can be implicated in the pathogenesis of neurodegenerative and psychiatric disorders. In part, ADMA can affect brain health negatively modulating critical functions of the blood-brain barrier (BBB). The precise mechanisms and consequences of ADMA action on the cerebral vasculature remains unexplored. Here, we evaluated ADMA-induced maladaptation of BBB functions by analyzing real time electrical cell-substrate impedance, paracellular permeability, immune-endothelial interactions, and inflammatory cytokines production by primary human brain microvascular endothelial cells (hBMVEC) treated with ADMA. We found that ADMA disrupted physical barrier function as evident by significant decrease in electrical resistance and increase in paracellular permeability of hBMVEC monolayers. Next, ADMA triggered immune-endothelial interactions since adhesion of primary human monocytes and their extravasation across the endothelial monolayer both were significantly elevated upon treatment with ADMA. Increased levels of cell adhesion molecules (VCAM-1 and RANTES), VEGF-A and inflammatory cytokines (IL-1β, TNF-α, IL-6, IL-10, IL-4, IL-2, IL-13, IL-12p70) characterize ADMA-induced hBMVEC dysfunction as inflammatory. Overall, our data suggest that ADMA can impair BBB functions disrupting the endothelial barrier and eliciting neuroinflammatory and neuroimmune responses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。