Slow TCA flux and ATP production in primary solid tumours but not metastases

原发性实体肿瘤中的 TCA 通量和 ATP 生成缓慢,但转移性实体肿瘤中的 TCA 通量和 ATP 生成缓慢

阅读:5
作者:Caroline R Bartman, Daniel R Weilandt, Yihui Shen, Won Dong Lee, Yujiao Han, Tara TeSlaa, Connor S R Jankowski, Laith Samarah, Noel R Park, Victoria da Silva-Diz, Maya Aleksandrova, Yetis Gultekin, Argit Marishta, Lin Wang, Lifeng Yang, Asael Roichman, Vrushank Bhatt, Taijin Lan, Zhixian Hu, Xi Xing

Abstract

Tissues derive ATP from two pathways-glycolysis and the tricarboxylic acid (TCA) cycle coupled to the electron transport chain. Most energy in mammals is produced via TCA metabolism1. In tumours, however, the absolute rates of these pathways remain unclear. Here we optimize tracer infusion approaches to measure the rates of glycolysis and the TCA cycle in healthy mouse tissues, Kras-mutant solid tumours, metastases and leukaemia. Then, given the rates of these two pathways, we calculate total ATP synthesis rates. We find that TCA cycle flux is suppressed in all five primary solid tumour models examined and is increased in lung metastases of breast cancer relative to primary orthotopic tumours. As expected, glycolysis flux is increased in tumours compared with healthy tissues (the Warburg effect2,3), but this increase is insufficient to compensate for low TCA flux in terms of ATP production. Thus, instead of being hypermetabolic, as commonly assumed, solid tumours generally produce ATP at a slower than normal rate. In mouse pancreatic cancer, this is accommodated by the downregulation of protein synthesis, one of this tissue's major energy costs. We propose that, as solid tumours develop, cancer cells shed energetically expensive tissue-specific functions, enabling uncontrolled growth despite a limited ability to produce ATP.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。