Bacterial lipopolysaccharides can initiate regeneration of the Xenopus tadpole tail

细菌脂多糖可以启动非洲爪蟾蝌蚪尾巴的再生

阅读:7
作者:Thomas F Bishop, Caroline W Beck

Abstract

Tadpoles of the frog Xenopus laevis can regenerate tails except for a short "refractory" period in which they heal rather than regenerate. Rapid and sustained production of ROS by NADPH oxidase (Nox) is critical for regeneration. Here, we show that tail amputation results in rapid, transient activation of the ROS-activated transcription factor NF-κB and expression of its direct target cox2 in the wound epithelium. Activation of NF-κB is also sufficient to rescue refractory tail regeneration. We propose that bacteria on the tadpole's skin could influence tail regenerative outcomes, possibly via LPS-TLR4-NF-κB signaling. When raised in antibiotics, fewer tadpoles in the refractory stage attempted regeneration, whereas addition of LPS rescued regeneration. Short-term activation of NF-κB using small molecules enhanced regeneration of tadpole hindlimbs, but not froglet forelimbs. We propose a model in which host microbiome contributes to creating optimal conditions for regeneration, via regulation of NF-κB by the innate immune system.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。