Abstract
The tumor suppressor p53 is one of the most studied proteins in human cancer.1-3 While nuclear p53 has been utilized for cancer gene therapy, mitochondrial targeting of p53 has not been fully exploited to date.4,5 In response to cellular stress, p53 translocates to the mitochondria and directly interacts with Bcl-2 family proteins including antiapoptotic Bcl-XL and Bcl-2 and proapoptotic Bak and Bax.6 Antiapoptotic Bcl-XL forms inhibitory complexes with proapoptotic Bak and Bax preventing their homo-oligomerization.7 Upon translocation to the mitochondria, p53 binds to Bcl-XL, releases Bak and Bax from the inhibitory complex and enhances their homo-oligomerization.8 Bak and Bax homotetramer formation disrupts the mitochondrial outer membrane, releases antiapoptotic factors such as cytochrome c and triggers a rapid apoptotic response mediated by caspase induction.9 It is still unclear if the MDM2 binding domain (MBD), the proline-rich domain (PRD) and/or DNA binding domain (DBD) of p53 are the domains responsible for interaction with Bcl-XL.10-17 The purpose of this work is to determine if a smaller functional domain of p53 is capable of inducing apoptosis similarly to full length p53. To explore this question, different domains of p53 (MBD, PRD, DBD) were fused to the mitochondrial targeting signal (MTS) from Bcl-XL to ensure Bcl-XL specific targeting.18 The designed constructs were tested for apoptotic activity (TUNEL, Annexin-V, and 7-AAD) in 3 different breast cancer cell lines (T47D, MCF-7, MDA-MB-231), in a cervical cancer cell line (HeLa) and in non-small cell lung adenocarcinoma cells H1373. Our results indicate that DBD-XL (p53 DBD fused to the Bcl-XL MTS) reproduces (in T47D cells) or demonstrates increased apoptotic activity (in MCF-7, MDA-MB-231, and HeLa cells) compared to p53-XL (full length p53 fused to Bcl-XL MTS). Additionally, mitochondrial dependent apoptosis assays (TMRE, caspase-9), co-IP and overexpression of Bcl-XL in T47D cells suggest that DBD fused to XL MTS may bind to and inhibit Bcl-XL. Taken together, our data demonstrates for the first time that the DBD of p53 may be the minimally necessary domain for achieving apoptosis at the mitochondria in multiple cell lines. This work highlights the role of small functional domains of p53 as a novel cancer biologic therapy.
