Polyphosphate affects cytoplasmic and chromosomal dynamics in nitrogen-starved Pseudomonas aeruginosa

多磷酸盐影响缺氮铜绿假单胞菌的细胞质和染色体动力学

阅读:5
作者:Sofia Magkiriadou, Willi L Stepp, Dianne K Newman, Suliana Manley, Lisa R Racki

Abstract

Polyphosphate (polyP) synthesis is a ubiquitous stress and starvation response in bacteria. In diverse species, mutants unable to make polyP have a wide variety of physiological defects, but the mechanisms by which this simple polyanion exerts its effects remain unclear. One possibility is that polyP's many functions stem from global effects on the biophysical properties of the cell. We characterize the effect of polyphosphate on cytoplasmic mobility under nitrogen-starvation conditions in the opportunistic pathogen Pseudomonas aeruginosa. Using fluorescence microscopy and particle tracking, we quantify the motion of chromosomal loci and cytoplasmic tracer particles. In the absence of polyP and upon starvation, we observe a 2- to 10-fold increase in mean cytoplasmic diffusivity. Tracer particles reveal that polyP also modulates the partitioning between a "more mobile" and a "less mobile" population: Small particles in cells unable to make polyP are more likely to be "mobile" and explore more of the cytoplasm, particularly during starvation. Concomitant with this larger freedom of motion in polyP-deficient cells, we observe decompaction of the nucleoid and an increase in the steady-state concentration of ATP. The dramatic polyP-dependent effects we observe on cytoplasmic transport properties occur under nitrogen starvation, but not carbon starvation, suggesting that polyP may have distinct functions under different types of starvation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。