The methyltransferase MLL4 promotes nonalcoholic steatohepatitis by enhancing NF-κB signaling

甲基转移酶 MLL4 通过增强 NF-κB 信号传导促进非酒精性脂肪性肝炎

阅读:8
作者:Junekyoung Lee, Hyejin An, Chong-Su Kim, Seunghee Lee

Abstract

Non-alcoholic fatty liver disease (NAFLD) is a growing health problem worldwide, ranging from non-alcoholic fatty liver (NAFL) to the more severe metabolic non-alcoholic steatohepatitis (NASH). Although many studies have elucidated the pathogenesis of NAFLD, the epigenetic regulatory mechanism from NAFL to NASH remains incompletely understood. The histone H3 lysine 4 methyltransferase, MLL4 (also called KMT2D), is a critical epigenetic transcriptional coactivator that mediates overnutrition-induced steatosis in mice, but its potential role in the progression of NASH remains largely unknown. Here, we show that mice lacking the one allele of the Mll4 gene are resistant to hepatic steatosis, inflammation, and fibrosis in NASH conditions compared to wild-type controls. Transcriptome analysis of the livers of control and Mll4+/- mice identified pro-inflammatory genes regulated by the nuclear factor kappa B (NF-κB) signaling pathway as major target genes of MLL4. We show that MLL4 binds to p65 and that MLL4 is required for NF-κB transactivation. Myeloid-specific Mll4 knockout mice showed an almost complete block of NASH, while hepatocyte-specific Mll4 knockout mice showed mild inhibition of steatosis. Pro-inflammatory M1 polarization is decreased and anti-inflammatory M2 polarization is increased in liver macrophages from myeloid-specific Mll4 knockout mice. Importantly, we show that histone H3-lysine 4 methylation mediated by the MLL4-complex plays a critical role in promoting the expression of Ccl2 in hepatocytes and M1 marker genes in macrophages. Our results demonstrate that MLL4, through the NF-κB-MLL4 regulatory axis, exacerbates steatohepatitis in the context of an inflammatory response and represents a potential therapeutic target for NASH.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。