Identification of a DNA-binding site for the transcription factor Haa1, required for Saccharomyces cerevisiae response to acetic acid stress

鉴定转录因子 Haa1 的 DNA 结合位点,该位点是酿酒酵母响应乙酸胁迫所必需的

阅读:5
作者:Nuno P Mira, Sílvia F Henriques, Greg Keller, Miguel C Teixeira, Rute G Matos, Cecília M Arraiano, Dennis R Winge, Isabel Sá-Correia

Abstract

The transcription factor Haa1 is the main player in reprogramming yeast genomic expression in response to acetic acid stress. Mapping of the promoter region of one of the Haa1-activated genes, TPO3, allowed the identification of an acetic acid responsive element (ACRE) to which Haa1 binds in vivo. The in silico analysis of the promoter regions of the genes of the Haa1-regulon led to the identification of an Haa1-responsive element (HRE) 5'-GNN(G/C)(A/C)(A/G)G(A/G/C)G-3'. Using surface plasmon resonance experiments and electrophoretic mobility shift assays it is demonstrated that Haa1 interacts with high affinity (K(D) of 2 nM) with the HRE motif present in the ACRE region of TPO3 promoter. No significant interaction was found between Haa1 and HRE motifs having adenine nucleotides at positions 6 and 8 (K(D) of 396 and 6780 nM, respectively) suggesting that Haa1p does not recognize these motifs in vivo. A lower affinity of Haa1 toward HRE motifs having mutations in the guanine nucleotides at position 7 and 9 (K(D) of 21 and 119 nM, respectively) was also observed. Altogether, the results obtained indicate that the minimal functional binding site of Haa1 is 5'-(G/C)(A/C)GG(G/C)G-3'. The Haa1-dependent transcriptional regulatory network active in yeast response to acetic acid stress is proposed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。