Neurodegeneration in the cortical sulcus is a feature of chronic traumatic encephalopathy and associated with repetitive head impacts

皮质沟神经变性是慢性创伤性脑病的特征,与反复头部撞击有关

阅读:11
作者:Raymond Nicks #, Arsal Shah #, Spiro Anthony Stathas, Daniel Kirsch, Sarah M Horowitz, Nicole Saltiel, Samantha M Calderazzo, Morgane L M D Butler, Kerry A Cormier, Nurgul Aytan, Fatima Tu-Zahra, Rebecca Mathias, Farwa Faheem, Suzie Marcus, Elizabeth Spurlock, Lucas Fishbein, Camille D Esnault, Alex

Abstract

Neurodegeneration is a seminal feature of many neurological disorders. Chronic traumatic encephalopathy (CTE) is caused by repetitive head impacts (RHI) and is characterized by sulcal tau pathology. However, quantitative assessments of regional neurodegeneration in CTE have not been described. In this study, we quantified three key neurodegenerative measures, including cortical thickness, neuronal density, and synaptic proteins, in contact sport athletes (n = 185) and non-athlete controls (n = 52) within the sulcal depth, middle, and gyral crest of the dorsolateral frontal cortex. Cortical thickness and neuronal density were decreased within the sulcus in CTE compared to controls (p's < 0.05). Measurements of synaptic proteins within the gyral crest showed a reduction of α-synuclein with CTE stage (p = 0.002) and variable changes in PSD-95 density. After adjusting for age, multiple linear regression models demonstrated a strong association between the duration of contact sports play and cortical thinning (p = 0.001) and neuronal loss (p = 0.032) within the sulcus. Additional regression models, adjusted for tau pathology, suggest that within the sulcus, the duration of play was associated with neuronal loss predominantly through tau pathology. In contrast, the association of duration of play with cortical thinning was minimally impacted by tau pathology. Overall, CTE is associated with cortical atrophy and a predominant sulcal neurodegeneration. Furthermore, the duration of contact sports play is associated with measures of neurodegeneration that are more severe in the cortical sulcus and may occur through tau-dependent and independent mechanisms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。