Dermal papilla cells and melanocytes response to physiological oxygen levels depends on their interactions

真皮乳头细胞和黑色素细胞对生理氧水平的反应取决于它们之间的相互作用

阅读:8
作者:Carla M Abreu, Rui L Reis, Alexandra P Marques

Background

Human dermal papilla (DP) cells and melanocytes (hMel) are central players in hair growth and pigmentation, respectively. In hair follicles (HFs), oxygen (O2 ) levels average 5%, being coupled with the production of reactive oxygen species (ROS), necessary to promote hair growth. Materials and

Conclusions

Overall, we showed that the response to physoxia differs according to hMel-DP cells interactions and that the microenvironment recreated when in direct contact favours their functions, which can be relevant for hair regeneration purposes.

Methods

DP cell and hMel proliferation and phenotype were studied under physiological (5%O2 , physoxia) or atmospheric (21%O2 , normoxia) oxygen levels. hMel-DP cells interactions were studied in indirect co-culture or by directly co-culturing hMel with DP spheroids, to test whether their interaction affected the response to physoxia.

Results

Physoxia decreased DP cell senescence and improved their secretome and phenotype, as well as hMel proliferation, migration, and tyrosinase activity. In indirect co-cultures, physoxia affected DP cells' alkaline phosphatase (ALP) activity but their signalling did not influence hMel proliferation or tyrosinase activity. Additionally, ROS production was higher than in monocultures but a direct correlation between ROS generation and ALP activity in DP cells was not observed. In the 3D aggregates, where hMel are organized around the DP, both hMel tyrosinase and DP cells ALP activities, their main functional indicators, plus ROS production were higher in physoxia than normoxia. Conclusions: Overall, we showed that the response to physoxia differs according to hMel-DP cells interactions and that the microenvironment recreated when in direct contact favours their functions, which can be relevant for hair regeneration purposes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。