Activity-dependent modulation of neuronal KV channels by retinoic acid enhances CaV channel activity

视黄酸对神经元KV通道的活性依赖性调节增强了CaV通道活性

阅读:5
作者:Eric de Hoog, Gaynor E Spencer

Abstract

The metabolite of vitamin A, retinoic acid (RA), is known to affect synaptic plasticity in the nervous system and to play an important role in learning and memory. A ubiquitous mechanism by which neuronal plasticity develops in the nervous system is through modulation of voltage-gated Ca2+ (CaV) and voltage-gated K+ channels. However, how retinoids might regulate the activity of these channels has not been determined. Here, we show that RA modulates neuronal firing by inducing spike broadening and complex spiking in a dose-dependent manner in peptidergic and dopaminergic cell types. Using patch-clamp electrophysiology, we show that RA-induced complex spiking is activity dependent and involves enhanced inactivation of delayed rectifier voltage-gated K+ channels. The prolonged depolarizations observed during RA-modulated spiking lead to an increase in Ca2+ influx through CaV channels, though we also show an opposing effect of RA on the same neurons to inhibit Ca2+ influx. At physiological levels of Ca2+, this inhibition is specific to CaV2 (not CaV1) channels. Examining the interaction between the spike-modulating effects of RA and its inhibition of CaV channels, we found that inhibition of CaV2 channels limits the Ca2+ influx resulting from spike modulation. Our data thus provide novel evidence to suggest that retinoid signaling affects both delayed rectifier K+ channels and CaV channels to fine-tune Ca2+ influx through CaV2 channels. As these channels play important roles in synaptic function, we propose that these modulatory effects of retinoids likely contribute to synaptic plasticity in the nervous system.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。