Ontogeny of Fetal Cardiometabolic Pathways: The Potential Role of Cortisol and Thyroid Hormones in Driving the Transition from Preterm to Near-Term Heart Development in Sheep

胎儿心脏代谢途径的个体发育:皮质醇和甲状腺激素在促进绵羊从早产到近期心脏发育的转变中的潜在作用

阅读:19
作者:Reza Amanollahi, Stacey L Holman, Melanie R Bertossa, Ashley S Meakin, Kent L Thornburg, I Caroline McMillen, Michael D Wiese, Mitchell C Lock, Janna L Morrison

Abstract

Understanding hormonal and molecular changes during the transition from preterm to near-term gestation is essential for investigating how pregnancy complications impact fetal heart development and contribute to long-term cardiovascular risks for offspring. This study examines these cardiac changes in fetal sheep, focusing on the changes between 116 days (preterm) and 140 days (near term) of gestation (dG, term = 150) using Western blotting, LC-MS/MS, and histological techniques. We observed a strong correlation between cortisol and T3 (Triiodothyronine) in heart tissue in near-term fetuses, highlighting the role of glucocorticoid signalling in fetal heart maturation. Protein expression patterns in the heart revealed a decrease in multiple glucocorticoid receptor isoforms (GRα-A, GR-P, GR-A, GRα-D2, and GRα-D3), alongside a decrease in IGF-1R (a marker of cardiac proliferative capacity) and p-FOXO1(Thr24) but an increase in PCNA (a marker of DNA replication), indicating a shift towards cardiomyocyte maturation from preterm to near term. The increased expression of proteins regulating mitochondrial biogenesis and OXPHOS complex 4 reflects the known transition from glycolysis to oxidative phosphorylation, essential for meeting the energy demands of the postnatal heart. We also found altered glucose transporter expression, with increased pIRS-1(ser789) and GLUT-4 but decreased GLUT-1 expression, suggesting improved insulin responsiveness as the heart approaches term. Notably, the reduced protein abundance of SIRT-1 and SERCA2, along with increased phosphorylation of cardiac Troponin I(Ser23/24), indicates adaptations for more energy-efficient contraction in the near-term heart. In conclusion, these findings show the complex interplay of hormonal, metabolic, and growth changes that regulate fetal heart development, providing new insights into heart development that are crucial for understanding pathological conditions at birth and throughout life.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。