Conclusion
In all groups tested, osteoblast-like cells were able to colonize, proliferate, and differentiate, suggesting a restoration of biocompatibility of infected discs using airflow. Furthermore, photomodulation may promote the differentiation of osteoblast-like cells cultured on both sterile and disinfected titanium surfaces.
Methods
The experimental groups consisted of cells seeded on titanium discs exposed or not in a peri-implantitis environment with or without biomodulation. Infected discs were cleaned with airflow with erythritol powder. Cell cultures seeded on tricalcium phosphate (TCP) surfaces with or without biomodulation with a laser (810 nm) were used as controls. The study evaluated cell viability, proliferation, adhesion (SEM) at 24, 48 and 72 hours, and surface roughness changes (profilometry), as well as the effects of low-level laser therapy (LLLT) on ALP, OSC, TGF-b1, Runx2, and BMP-7 expression in MG63 cells' genetic profile on days 7, 14, and 21.
Results
The MTT assay as well as the FDA/PI method revealed that cell proliferation did not show significant differences between sterile and decontaminated discs at any timepoint. SEM photographs on day 7 showed that osteoblast-like cells adhered to both sterile and disinfected surfaces, while surface roughness did not change based on amplitude parameters. The combination of airflow and LLLT revealed a biomodulated effect on the differentiation of osteoblast-like cells with regard to the impact of laser irradiation on the genetic profile of the MG63 cells.
