Taiwan Bat Lyssavirus: In Vitro and In Vivo Assessment of the Ability of Rabies Vaccine-Derived Antibodies to Neutralise a Novel Lyssavirus

台湾蝙蝠狂犬病毒:体外和体内评估狂犬病疫苗衍生抗体中和新型狂犬病毒的能力

阅读:7
作者:Rebecca Shipley, Edward Wright, Samuel P Smith, David Selden, Anthony R Fooks, Ashley C Banyard

Abstract

Rabies is a neglected tropical disease. The prototype virus, the rabies virus, still causes tens of thousands of human fatalities annually. Rabies is one member of the genus Lyssavirus. The burden of other lyssaviruses is unclear. The continued emergence of novel lyssaviruses means that assessment of vaccine efficacy against these viruses is critical, as standard rabies vaccines are not efficacious against all lyssaviruses. Taiwan bat lyssavirus (TWBLV) was first reported in 2018 following isolation from Japanese house bats. Since the initial detection and genetic characterisation, no attempts have been made to antigenically define this virus. Due to the inaccessibility of the wildtype isolate, the successful generation of a live recombinant virus, cSN-TWBLV, is described, where the full-length genome clone of the RABV vaccine strain, SAD-B19, was constructed with the glycoprotein of TWBLV. In vitro and in vivo characterization of cSN-TWBLV was undertaken and demonstrated evidence for cross-neutralisation of cSN-TWBLV with phylogroup I -specific sera and rabies virus standard sera. For neutralisation equivalent to 0.5 IU/mL of WHO and World Organisation of Animal Health (WOAH) sera against CVS, 0.5 IU/mL of WOAH sera and 2.5 IU/mL of WHO sera were required to neutralise cSN-TWBLV. In addition, specific sera for ARAV and EBLV-1 exhibited the highest neutralising antibody titres against cSN-TWBLV, compared to other phylogroup I-specific sera.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。