Spatial Control of Gene Expression by Nanocarriers Using Heparin Masking and Ultrasound-Targeted Microbubble Destruction

利用肝素掩蔽和超声靶向微泡破坏对纳米载体基因表达进行空间控制

阅读:5
作者:Beata Chertok, Robert Langer, Daniel G Anderson

Abstract

We developed a method to spatially control gene expression following nonviral delivery of DNA. This method includes surface-modifying DNA nanocarriers with heparin to inhibit passive gene transfer in both the target and the off-target tissues and using ultrasound-targeted microbubble destruction (UTMD) to selectively activate heparin-inhibited gene transfer at the target site. We observed that the engraftment of heparin onto the surface of cationic liposomes reduced off-target gene expression in the liver, a major site of nanoplex accumulation, by more than 700-fold compared to the nonheparinized PEGylated liposomes. We further observed that tumor-directed UTMD increased gene transfer with heparin-modified nanoplexes by more than 10-fold. This method augmented tumor-to-liver selectivity of gene expression by 4000-fold compared to controls. We conclude that heparinization of DNA nanocarriers in conjunction with localized activation of gene transfer by UTMD may enable greater spatial control over genetic therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。