Automated Recognition of Cancer Tissues through Deep Learning Framework from the Photoacoustic Specimen

通过深度学习框架从光声样本中自动识别癌症组织

阅读:5
作者:Gayathry Sobhanan Warrier, T M Amirthalakshmi, K Nimala, T Thaj Mary Delsy, P Stella Rose Malar, G Ramkumar, Raja Raju

Abstract

The fast advancement of biomedical research technology has expanded and enhanced the spectrum of diagnostic instruments. Various research groups have found optical imaging, ultrasonic imaging, and magnetic resonance imaging to create multifunctional devices that are critical for biomedical activities. Multispectral photoacoustic imaging that integrates the ideas of optical and ultrasonic technologies is one of the most essential instruments. At the same time, early cancer identification is becoming increasingly important in order to minimize fatality. Deep learning (DL) techniques have recently advanced to the point where they can be used to diagnose and classify cancer using biological images. This paper describes a hybrid optimization method that combines in-depth transfer learning-based cancer detection with multispectral photoacoustic imaging. The goal of the PS-ACO-RNN approach is to use ultrasound images to detect and classify the presence of cancer. Bilateral filtration (BF) is often used as a noise removal approach in image processing. In addition, lightweight LEDNet models are used to separate the biological images. A feature extractor with particle swarm with ant colony optimization (PS-ACO) paradigm can also be used. Finally, biological images assign appropriate class labels using a recurrent neural network (RNN) model. The effectiveness of the PS-ACO-RNN technique is verified using a benchmark database, and test results show that the PS-ACO-RNN approach works better than current approaches.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。