Spinal estrogen receptor alpha mediates estradiol-induced pronociception in a visceral pain model in the rat

脊髓雌激素受体α介导大鼠内脏痛模型中雌二醇诱发的痛觉

阅读:5
作者:Yaping Ji, Bin Tang, Richard J Traub

Abstract

We previously reported that 17β-estradiol (E2) is pronociceptive in a visceral pain model in the rat. Subcutaneously (s.c.) administered E2 reversed the decrease in the colorectal distention (CRD)-evoked visceromotor response produced by ovariectomy (OVx) and CRD-induced nociceptive responses were greater in proestrous rats compared with met/diestrous rats. The site of action, the type of estrogen receptors activated, and the possible intracellular signaling pathway involved are yet to be established. In the present study, intrathecal (i.t.) E2 administered to OVx rats mimicked the effects of s.c. E2, suggesting that spinal estrogen receptors are involved. This is further supported by the observations that the anti-estrogen ICI 182,780 injected i.t. in intact female rats significantly decreased the visceromotor response to CRD, the response of colonic afferents was not affected by OVx, and colonic afferents did not label for estrogen receptor α (ERα). The ERα selective agonist, 4,4',4''-[4-propyl-(1H)-pyrazole-1,3,5-triyl]tris-phenol (PPT; s.c. or i.t.) facilitated the visceromotor response similar to E2, suggesting ERα activation is involved in mediating the pronociceptive effect of E2. PPT (s.c. or i.t.) increased the response of spinal dorsal horn neurons to CRD, indicating a spinal site of action. In addition, s.c. E2 or PPT increased CRD-induced spinal extracellular signal-regulated kinase (ERK) phosphorylation that was not observed in OVx rats and a mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor blocked facilitation of the visceromotor response by PPT. Taken together, the present study demonstrates that spinal ERα mediates the pronociceptive effect of E2 on visceral signal processing through activation of the MAPK pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。