Single-Particle Spectroscopic Chromatography Reveals Heterogeneous RNA Loading and Size Correlations in Lipid Nanoparticles

单粒子光谱色谱法揭示脂质纳米粒子中异质 RNA 负载和尺寸相关性

阅读:13
作者:Sixuan Li, Yizong Hu, Jinghan Lin, Zachary Schneiderman, Fangchi Shao, Lai Wei, Andrew Li, Kuangwen Hsieh, Efrosini Kokkoli, Tine Curk, Hai-Quan Mao, Tza-Huei Wang

Abstract

Lipid nanoparticles (LNP) have emerged as pivotal delivery vehicles for RNA therapeutics. Previous research and development usually assumed that LNPs are homogeneous in population, loading density, and composition. Such perspectives are difficult to examine due to the lack of suitable tools to characterize these physicochemical properties at the single-nanoparticle level. Here, we report an integrated spectroscopy-chromatography approach as a generalizable strategy to dissect the complexities of multicomponent LNP assembly. Our platform couples cylindrical illumination confocal spectroscopy (CICS) with single-nanoparticle free solution hydrodynamic separation (SN-FSHS) to simultaneously profile population identity, hydrodynamic size, RNA loading levels, and distributions of helper lipid and PEGylated lipid of LNPs at the single-particle level and in a high-throughput manner. Using a benchmark siRNA LNP formulation, we demonstrate the capability of this platform by distinguishing seven distinct LNP populations, quantitatively characterizing size distribution and RNA loading level in wide ranges, and more importantly, resolving composition-size correlations. This SN-FSHS-CICS analysis provides critical insights into a substantial degree of heterogeneity in the packing density of RNA in LNPs and size-dependent loading-size correlations, explained by kinetics-driven assembly mechanisms of RNA LNPs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。