Treadmill running induces remodeling of the infrapatellar fat pad in an intensity-dependent manner

跑步机跑步以强度依赖的方式诱导髌下脂肪垫重塑

阅读:19
作者:Ni Zeng, Tao Liao, Xin-Yuan Chen, Zhi-Peng Yan, Jie-Ting Li, Guo-Xin Ni

Conclusion

The effect of running on IFP remodeling was intensity dependent. In contrast to LIR and MIR, HIR increased the fibrosis and vascularity of the IFP. HIR-induced IFP fibrosis was probably due to mechanical stress, rather than pathological proinflammatory M1/M2 polarization.

Methods

Animals were randomly assigned into the sedentary (SED), low-intensity running (LIR), medium-intensity running (MIR), and high-intensity running (HIR) groups. The rats in the LIR, MIR, and HIR groups were subjected to an 8-week treadmill running protocol. In each group, the IFP was examined at the baseline and at the 8th week to perform histomorphology, immunohistochemistry, and mRNA expression analyses.

Objective

To investigate the response of the infrapatellar fat pad (IFP) to running at different intensities and further explore the underlying mechanisms of these responses under different running-induced loadings.

Results

Compared with LIR and MIR, HIR for 8 weeks led to a substantial increase in the surface cellularity (1.67 ± 1.15), fibrosis (1.29 ± 0.36), and vascularity (33.31 ± 8.43) of the IFP but did not increase IFP inflammation or M1 macrophage polarization. Low-to-medium-intensity running resulted in unchanged or decreased fibrosis, vascularity, and surface cellularity in the IFP compared to those of the SED group. Furthermore, serum leptin and visfatin levels were significantly lower in the LIR and MIR groups than in the SED group or the HIR group (P < 0.05).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。