Discussion
We conclude that increased local IGF-1 promotes functional hypertrophy when dysferlin is absent and reestablishes IGF-1 as a potential therapeutic for dysferlinopathies.
Methods
Muscle-specific transgenic expression and postnatal viral delivery of Igf1 were used in Dysf-/- and control mice. Increased IGF-1 levels were confirmed by enzyme-linked immunosorbent assay. Testing for skeletal muscle mass and function was performed in male and female mice.
Results
Muscle hypertrophy occurred in response to increased IGF-1 in mice with and without dysferlin. Male mice showed a more robust response compared with females. Increased IGF-1 did not cause loss of force per cross-sectional area in Dysf-/- muscles.
