Discovery of novel aromatase inhibitors using a homogeneous time-resolved fluorescence assay

使用均相时间分辨荧光分析发现新型芳香化酶抑制剂

阅读:6
作者:Jin-zi Ji, Ke-jing Lao, Jie Hu, Tao Pang, Zhen-zhou Jiang, Hao-liang Yuan, Jing-shan Miao, Xin Chen, Shan-shan Ning, Hua Xiang, Yu-meng Guo, Ming Yan, Lu-yong Zhang

Aim

Aromatase is an important target for drugs to treat hormone-dependent diseases, including breast cancer. The aim of this study was to develop a homogeneous time-resolved fluorescence (HTRF) aromatase assay suitable for high-throughput screening (HTS).

Conclusion

XHN27, an imidazolyl quinoline derivative of flavonoid, is a potent aromatase inhibitor with anti-proliferation activity against breast cancer in vitro. The established assay can be used in HTS for discovering novel aromatase inhibitor.

Methods

A 384-well aromatase HTRF assay was established, and used to screen about 7000 compounds from a compound library. Anti-proliferation activity of the hit was evaluated using alamarBlue(R) assay in a hormone-dependent breast cancer cell line T47D. Molecular docking was conducted to elucidate the binding mode of the hit using the Discovery Studio program.

Results

The Z' value and signal to background (S/B) ratio were 0.74 and 5.4, respectively. Among the 7000 compounds, 4 hits (XHN22, XHN26, XHN27 and triptoquinone A) were found to inhibit aromatase with IC50 values of 1.60±0.07, 2.76±0.24, 0.81±0.08 and 45.8±11.3 μmol /L, respectively. The hits XHN22, XHN26 and XHN27 shared the same chemical scaffold of 4-imidazolyl quinoline. Moreover, the most potent hit XHN27 at 10 and 50 μmol/L inhibited the proliferation of T47D cells by 45.3% and 35.2%, respectively. The docking study revealed that XHN27 docked within the active site of aromatase and might form a hydrogen bond and had a π-cation interaction with amino acid residues of the protein.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。