Cross-linking of rotavirus outer capsid protein VP7 by antibodies or disulfides inhibits viral entry

轮状病毒外壳蛋白 VP7 与抗体或二硫化物交联可抑制病毒进入

阅读:8
作者:Scott T Aoki, Shane D Trask, Barbara S Coulson, Harry B Greenberg, Philip R Dormitzer, Stephen C Harrison

Abstract

Antibodies that neutralize rotavirus infection target outer coat proteins VP4 and VP7 and inhibit viral entry. The structure of a VP7-Fab complex (S. T. Aoki, et al., Science 324:1444-1447, 2009) led us to reclassify epitopes into two binding regions at inter- and intrasubunit boundaries of the calcium-dependent trimer. It further led us to show that antibodies binding at the intersubunit boundary inhibit uncoating of the virion outer layer. We have now tested representative antibodies for each of the defined structural epitope regions and find that antibodies recognizing epitopes in either binding region neutralize by cross-linking VP7 trimers. Antibodies that bind at the intersubunit junction neutralize as monovalent Fabs, while those that bind at the intrasubunit region require divalency. The VP7 structure has also allowed us to design a disulfide cross-linked VP7 mutant which recoats double-layered particles (DLPs) as efficiently as does wild-type VP7 but which yields particles defective in cell entry as determined both by lack of infectivity and by loss of α-sarcin toxicity in the presence of recoated particles. We conclude that dissociation of the VP7 trimer is an essential step in viral penetration into cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。