Identification of a specific α-synuclein peptide (α-Syn 29-40) capable of eliciting microglial superoxide production to damage dopaminergic neurons

鉴定出一种能够引发小胶质细胞超氧化物产生并损伤多巴胺能神经元的特定 α-突触核蛋白肽 (α-Syn 29-40)

阅读:14
作者:Shijun Wang, Chun-Hsien Chu, Mingri Guo, Lulu Jiang, Hui Nie, Wei Zhang, Belinda Wilson, Li Yang, Tessandra Stewart, Jau-Shyong Hong, Jing Zhang

Background

Misfolded α-synuclein (α-Syn) aggregates participate in the pathogenesis of synucleinopathies, such as Parkinson's disease. Whereas much is known about how the various domains within full-length α-Syn (FL-α-Syn) contribute to the formation of α-Syn aggregates and therefore to their neurotoxicity, little is known about whether the individual peptides that can be generated from α-syn, possibly as intermediate metabolites during degradation of misfolded α-Syn aggregates, are neurotoxic themselves.

Conclusions

Collectively, our study suggests novel information regarding how α-Syn causes neuronal injury, possibly including mechanisms involving abnormal metabolites of α-Syn aggregates.

Methods

A series of synthesized α-Syn peptides, corresponding to the locus in FL-α-Syn containing alanine 30, substitution of which with a proline causes a familial form of Parkinson's disease, were examined for their capacity of inducing release of microglial superoxide. The neurotoxicity of these peptides was measured according to their influence on the ability of neuroglial cultures deficient in gp91 (phox) , the catalytic unit of NADPH oxidase (Nox2), or wild-type cultures to take up (3)H-labeled dopamine and on the number of tyrosine hydroxylase-staining-positive neurons. Western blots and confocal images were utilized to analyze membrane translocation of p47 (phox) and p67 (phox) , phosphorylation of p47 (phox) and Erk1/2 kinase, and binding of α-Syn peptides to gp91 (phox) . Activation of brain microglia in mice injected with α-Syn peptides was demonstrated by immunostaining for major histocompatibility complex (MHC)-II along with qPCR for Iba-1 and MHC-II.

Results

We report α-Syn (29-40) as a specific peptide capable of activating microglial Nox2 to produce superoxide and cause dopaminergic neuronal damage. Administered to mice, this peptide also activated brain microglia to increase expression of MHC-II and Iba-1 and stimulated oxidation reaction. Exploring the underlying mechanisms showed that α-Syn (29-40) peptide triggered Nox2 to generate extracellular superoxide and its metabolite H2O2 by binding to the catalytic unit gp91 (phox) of Nox2; diffusing into cytosol, H2O2 activated Erk1/2 kinase to phosphorylate p47 (phox) and p67 (phox) and further activated Nox2, establishing a positive feedback loop to amplify the Nox2-mediated response. Conclusions: Collectively, our study suggests novel information regarding how α-Syn causes neuronal injury, possibly including mechanisms involving abnormal metabolites of α-Syn aggregates.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。