Strategic Design and Mechanistic Understanding of Vacancy-Filling Heusler Thermoelectric Semiconductors

空位填充 Heusler 热电半导体的战略设计和机制理解

阅读:5
作者:Weimin Hu, Song Ye, Qizhu Li, Binru Zhao, Masato Hagihala, Zirui Dong, Yubo Zhang, Jiye Zhang, Shuki Torri, Jie Ma, Binghui Ge, Jun Luo

Abstract

Doping narrow-gap semiconductors is a well-established approach for designing efficient thermoelectric materials. Semiconducting half-Heusler (HH) and full-Heusler (FH) compounds have garnered significant interest within the thermoelectric field, yet the number of exceptional candidates remains relatively small. It is recently shown that the vacancy-filling approach is a viable strategy for expanding the Heusler family. Here, a range of near-semiconducting Heuslers, TiFexCuySb, creating a composition continuum that adheres to the Slater-Pauling electron counting rule are theoretically designed and experimentally synthesized. The stochastic and incomplete occupation of vacancy sites within these materials imparts continuously changing electrical conductivities, ranging from a good semiconductor with low carrier concentration in the endpoint TiFe0.67Cu0.33Sb to a heavily doped p-type semiconductor with a stoichiometry of TiFe1.00Cu0.20Sb. The optimal thermoelectric performance is experimentally observed in the intermediate compound TiFe0.80Cu0.28Sb, achieving a peak figure of merit of 0.87 at 923 K. These findings demonstrate that vacancy-filling Heusler compounds offer substantial opportunities for developing advanced thermoelectric materials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。