Chemotaxis of Drosophila border cells is modulated by tissue geometry through dispersion of chemoattractants

果蝇边界细胞的趋化性受组织几何形状的调控,这种调控是通过化学引诱剂的扩散实现的。

阅读:1
作者:Alexander George ,Naghmeh Akhavan ,Bradford E Peercy ,Michelle Starz-Gaiano

Abstract

Migratory cells respond to graded concentrations of diffusible chemoattractants in vitro, but how complex tissue geometries in vivo impact chemotaxis is poorly understood. To address this, we studied the Drosophila border cells. Live-imaged border cells varied in their chemotactic migration speeds, which correlated positionally with distinct architectures. We then developed a reduced mathematical model to determine how chemoattractant distribution is affected by tissue architecture. Larger extracellular volumes locally dampened the chemoattractant gradient and, when coupled with an agent-based motion of the cluster, reduced cell speeds. This suggests that chemoattractant levels vary by tissue architectures, informing cell migration behaviors locally, which we tested in vivo. Genetically elevating chemoattractant levels slowed migration in specific architectural regions, while mutants with spacious tissue structure rescued defects from high chemoattractant levels, promoting punctual migration. Our results highlight the interplay between tissue geometry and the local distribution of signaling molecules to orchestrate cell migration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。