The differentiation state of small intestinal organoid models influences prediction of drug-induced toxicity

小肠类器官模型的分化状态影响药物毒性的预测

阅读:6
作者:Jessica A Klein, Julia D Heidmann, Tomomi Kiyota, Aaron Fullerton, Kimberly A Homan, Julia Y Co

Abstract

Drug-induced intestinal toxicity (GIT) is a frequent dose-limiting adverse event that can impact patient compliance and treatment outcomes. In vivo, there are proliferative and differentiated cell types critical to maintaining intestinal homeostasis. Traditional in vitro models using transformed cell lines do not capture this cellular complexity, and often fail to predict intestinal toxicity. Primary tissue-derived intestinal organoids, on the other hand, are a scalable Complex in vitro Model (CIVM) that recapitulates major intestinal cell lineages and function. Intestinal organoid toxicity assays have been shown to correlate with clinical incidence of drug-induced diarrhea, however existing studies do not consider how differentiation state of the organoids impacts assay readouts and predictivity. We employed distinct proliferative and differentiated organoid models of the small intestine to assess whether differentiation state alone can alter toxicity responses to small molecule compounds in cell viability assays. In doing so, we identified several examples of small molecules which elicit differential toxicity in proliferative and differentiated organoid models. This proof of concept highlights the need to consider which cell types are present in CIVMs, their differentiation state, and how this alters interpretation of toxicity assays.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。