Influence of epinephrine reactivity to stress on meat quality in goats

肾上腺素应激反应对山羊肉品质的影响

阅读:7
作者:Arshad Shaik, Phaneendra Batchu, Aditya Naldurtiker, Priyanka Gurrapu, Brou Kouakou, Thomas H Terrill, Govind Kannan

Abstract

The magnitude of physiological responses to a stressor can vary among individual goats within a herd; however, whether these differences can differentially affect meat quality is not known. This study was conducted to determine the influence of the magnitude of epinephrine response (ER) to acute stress on muscle metabolome and meat quality in goats. Male Spanish goats (6 mo old) were transported for 180 min. (N = 75 goats; 25 goats/d) to impose stress. Blood samples were obtained after transport for analysis of physiological responses. Goats were slaughtered using humane procedures and samples were collected for muscle metabolomics and meat quality analyses. The data obtained from blood and muscle/meat analysis were then categorized based on epinephrine concentrations into low (LE), medium (ME), and high (HE) ER groups (n = 12/ER group). The physiological and meat quality variables were analyzed as a Completely Randomized Design in SAS, and metabolomics data were analyzed using R software. Plasma glucose concentrations were significantly high in the HE group, low in the LE group, and intermediate in the ME group (P < 0.05). However, leukocyte counts and cortisol, norepinephrine, blood urea nitrogen, and creatine concentrations were not different among the ER groups. Muscle (Longissimus dorsi) glycogen concentrations (15 min postmortem) were significantly higher (P < 0.05) in the ME and LE groups than in the HE group. However, postmortem Longissimus muscle pH and temperature (15 min and 24 h), 24 h calpastatin and desmin levels, and rib chop color (L*, a*, and b*), cooking loss, and Warner-Bratzler shear force values were unaffected by ER. Targeted metabolomics analysis of Longissimus muscle (15 min) revealed that diacyl phosphatidylcholines (C38:0; 40:6) and sphingomyelin (C20:2) were significantly different (P < 0.05) among the ER groups, with the concentrations of these metabolites being consistently high in the LE group. These differential muscle metabolite concentrations suggest that ER can influence biochemical pathways associated with cell membrane integrity and signaling. ER had a significant effect on dopamine concentrations, with the levels increasing with increasing levels of ER. The results indicate that differences in epinephrine reactivity can influence selected physiological responses and muscle metabolites; however, it does not significantly influence meat quality attributes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。