Prediction of key biological processes from intercellular DNA damage differences through model-based fitting

通过基于模型的拟合根据细胞间 DNA 损伤差异预测关键生物过程

阅读:5
作者:Kensuke Otsuka, Kouki Uchinomiya, Yuki Yaguchi, Atsushi Shibata

Abstract

DNA double-strand breaks (DSBs) occurring within the genomic DNA of mammalian cells significantly impact cell survival, depending upon their repair capacity. This study presents a mathematical model to fit fibroblast survival rates with a sequence-specific DSB burden induced by the restriction enzyme AsiSI. When cells had a sporadic DSB burden under mixed culture, cell growth showed a good fit to the Lotka-Volterra competitive equation, predicting the presence of modifying factors acting as competitive cell-to-cell interactions compared to monocultures. Under the predicted condition, we found the Acta2 gene, a known marker of cancer-associated fibroblasts, played a role in competitive interactions between cells with different DSB burdens. These data suggest that the progression to the cancer microenvironment is determined by genomic stress, providing clues for estimating cancer risk by reconsidering the fitness of cells in their microenvironment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。