Role of formaldehyde in promoting aromatic selectivity during methanol conversion over gallium-modified zeolites

甲醛在镓改性沸石甲醇转化过程中对芳烃选择性的促进作用

阅读:8
作者:Wu Wen #, Tianci Xiao #, Beibei Feng, Chaoqun Zhou, Jian Li, Hao Ma, Zhongyue Zhou, Ying Zhang, Jiuzhong Yang, Zhandong Wang, Fei Qi, Jun Bao, Chengyuan Liu, Yang Pan

Abstract

Gallium-modified HZSM-5 zeolites are known to increase aromatic selectivity in methanol conversion. However, there are still disputes about the exact active sites and the aromatic formation mechanisms over Ga-modified zeolites. In this work, in situ synchrotron radiation photoionization mass spectrometry (SR-PIMS) experiments were carried out to study the behaviors of intermediates and products during methanol conversion over Ga-modified HZSM-5. The increased formaldehyde (HCHO) yield over Ga-modified HZSM-5 was found to play a key role in the increase in aromatic yields. More HCHO was deemed to be generated from the direct dehydrogenation of methanol, and Ga2O3 in Ga-modified HZSM-5 was found to be the active phase. The larger increase in aromatic production over Ga-modified HZSM-5 after reduction‒oxidation treatment was found to be the result of redispersed Ga2O3 with smaller size generating a larger amount of HCHO. This study provides some new insights into the internal driving force for promoting the production of aromatics over Ga-modified HZSM-5.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。