Asperosaponin VI ameliorates the CMS-induced depressive-like behaviors by inducing a neuroprotective microglial phenotype in hippocampus via PPAR-γ pathway

川芎皂苷 VI 通过 PPAR-γ 通路诱导海马中神经保护性小胶质细胞表型,改善 CMS 诱发的抑郁样行为

阅读:12
作者:Xue Jiang #, Saini Yi #, Qin Liu, Dapeng Su, Liangyuan Li, Chenghong Xiao, Jinqiang Zhang

Background

The natural compound asperosaponin VI has shown potential as an antidepressant, but how it works is unclear. Here, we explored its effects on mice exposed to chronic mild stress (CMS) and the underlying molecular pathways.

Conclusion

CMS in mice induces a pro-inflammatory microglial phenotype that causes reduced crosstalk between microglia and neuron, inflammation and synaptic dysfunction in the hippocampus, ultimately leading to depression-like behaviors. Asperosaponin VI may ameliorate the effects of CMS by inducing microglia to adopt a PPAR-γ-dependent neuroprotective phenotype.

Methods

Mice were exposed to CMS for 3 weeks followed by asperosaponin VI (40 mg/kg) or imipramine (20 mg/kg) for another 3 weeks. Depression-like behaviors were assessed in the forced swimming test (FST), sucrose preference test (SPT), tail suspension test (TST). Microglial phenotypes were evaluated using immunofluorescence staining, real-time quantitative PCR and enzyme-linked immunosorbent assays in hippocampus of mice. In some experiments, stressed animals were treated with the PPAR-γ antagonist GW9662 to examine its involvement in the effects of asperosaponin VI. Blockade of PPAR-γ in asperosaponin VI-treated primary microglia in the presence of lipopolysaccharide (LPS) was executed synchronously. The nuclear transfer of PPAR-γ in microglia was detected by immunofluorescence staining in vitro and in vivo. A co-cultured model of neuron and microglia was used for evaluating the regulation of ASA VI on the microglia-neuron crosstalk molecules.

Results

Asperosaponin VI ameliorated depression-like behaviors of CMS mice based on SPT, TST and FST, and this was associated with a switch of hippocampal microglia from a pro-inflammatory (iNOS+-Iba1+) to neuroprotective (Arg-1+-Iba1+) phenotype. CMS reduced the expression levels of PPAR-γ and phosphorylated PPAR-γ in hippocampus, which asperosaponin VI partially reversed. GW9662 treatment prevented the nuclear transfer of PPAR-γ in asperosaponin VI-treated microglia and inhibited the induction of Arg-1+ microglia. Blockade of PPAR-γ signaling also abolished the ability of asperosaponin VI to suppress pro-inflammatory cytokines while elevating anti-inflammatory cytokines in the hippocampus of CMS mice. The asperosaponin VI also promoted interactions between hippocampal microglia and neurons by enhancing CX3CL1/CX3CR1 and CD200/CD200R, and preserved synaptic function based on PSD95, CamKII β and GluA levels, but not in the presence of GW9662. Blockade of PPAR-γ signaling also abolished the antidepressant effects of asperosaponin VI in the SPT, TST and FST.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。