Key genes and immune pathways in T-cell mediated rejection post-liver transplantation identified via integrated RNA-seq and machine learning

通过整合 RNA 测序和机器学习确定肝移植后 T 细胞介导排斥的关键基因和免疫途径

阅读:7
作者:Wenhao Shao #, Huaxing Ding #, Yan Wang, Zhiyong Shi, Hezhao Zhang, Fanxiu Meng, Qingyao Chang, Haojiang Duan, Kairui Lu, Li Zhang, Jun Xu

Abstract

Liver transplantation is the definitive treatment for end-stage liver disease, yet T-cell mediated rejection (TCMR) remains a major challenge. This study aims to identify key genes associated with TCMR and their potential biological processes and mechanisms. The GSE145780 dataset was subjected to differential expression analysis, weighted gene co-expression network analysis (WGCNA), and machine learning algorithms to pinpoint key genes associated with TCMR. Gene Set Enrichment Analysis (GSEA), immune infiltration analysis, and regulatory networks were constructed to ascertain the biological relevance of these genes. Expression validation was performed using single-cell RNA-seq (scRNA-seq) data and liver biopsy tissues from patients. We identified 5 key genes (ITGB2, FCER1G, IL-18, GBP1, and CD53) that are associated with immunological functions, such as chemotactic activity, antigen processing, and T cell differentiation. GSEA highlighted enrichment in chemokine signaling and antigen presentation pathways. A lncRNA-miRNA-mRNA network was delineated, and drug target prediction yielded 26 potential drugs. Evaluation of expression levels in non-rejection (NR) and TCMR groups exhibited significant disparities in T cells and myeloid cells. Tissue analyses from patients corroborated the upregulation of GBP1, IL-18, CD53, and FCER1G in TCMR cases. Through comprehensive analysis, this research has identified 4 genes intimately connected with TCMR following liver transplantation, shedding light on the underlying immune activation pathways and suggesting putative targets for therapeutic intervention.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。