Early Steps of Individual Multireceptor Viral Interactions Dissected by High-Density, Multicolor Quantum Dot Mapping in Living Cells

通过活细胞中的高密度、多色量子点映射解剖单个多受体病毒相互作用的早期步骤

阅读:11
作者:Nicolas Mateos, Enric Gutierrez-Martinez, Jessica Angulo-Capel, Irene Carlon-Andres, Sergi Padilla-Parra, Maria F Garcia-Parajo, Juan A Torreno-Pina

Abstract

Viral capture and entry to target cells are the first crucial steps that ultimately lead to viral infection. Understanding these events is essential toward the design and development of suitable antiviral drugs and/or vaccines. Viral capture involves dynamic interactions of the virus with specific receptors in the plasma membrane of the target cells. In the last years, single virus tracking has emerged as a powerful approach to assess real time dynamics of viral processes in living cells and their engagement with specific cellular components. However, direct visualization of the early steps of multireceptor viral interactions at the single level has been largely impeded by the technical challenges associated with imaging individual multimolecular systems at relevant spatial (nanometer) and temporal (millisecond) scales. Here, we present a four-color, high-density quantum dot spatiotemporal mapping methodology to capture real-time interactions between individual virus-like-particles (VLPs) and three different viral (co-) receptors on the membrane of primary living immune cells derived from healthy donors. Together with quantitative tools, our approach revealed the existence of a coordinated spatiotemporal diffusion of the three different (co)receptors prior to viral engagement. By varying the temporal-windows of cumulated single-molecule localizations, we discovered that such a concerted diffusion impacts on the residence time of HIV-1 and SARS-CoV-2 VLPs on the host membrane and potential viral infectivity. Overall, our methodology offers the possibility for systematic analysis of the initial steps of viral-host interactions and could be easily implemented for the investigation of other multimolecular systems at the single-molecule level.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。