Experimental Study of the Implantation Process for Array Electrodes into Highly Transparent Agarose Gel

阵列电极植入高透明琼脂糖凝胶的实验研究

阅读:10
作者:Shengjie Wang, Xuan Yan, Xuefeng Jiao, Heng Yang

Abstract

Brain-computer interface (BCI) technology is currently a cutting-edge exploratory problem in the field of human-computer interaction. However, in experiments involving the implantation of electrodes into brain tissue, particularly high-speed or array implants, existing technologies find it challenging to observe the damage in real time. Considering the difficulties in obtaining biological brain tissue and the challenges associated with real-time observation of damage during the implantation process, we have prepared a transparent agarose gel that closely mimics the mechanical properties of biological brain tissue for use in electrode implantation experiments. Subsequently, we developed an experimental setup for synchronized observation of the electrode implantation process, utilizing the Digital Gradient Sensing (DGS) method. In the single electrode implantation experiments, with the increase in implantation speed, the implantation load increases progressively, and the tissue damage region around the electrode tip gradually diminishes. In the array electrode implantation experiments, compared to a single electrode, the degree of tissue indentation is more severe due to the coupling effect between adjacent electrodes. As the array spacing increases, the coupling effect gradually diminishes. The experimental results indicate that appropriately increasing the velocity and array spacing of the electrodes can enhance the likelihood of successful implantation. The research findings of this article provide valuable guidance for the damage assessment and selection of implantation parameters during the process of electrode implantation into real brain tissue.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。