TNFR2 Signaling Regulates the Immunomodulatory Function of Oligodendrocyte Precursor Cells

TNFR2 信号调节少突胶质细胞前体细胞的免疫调节功能

阅读:7
作者:Haritha L Desu, Placido Illiano, James S Choi, Maureen C Ascona, Han Gao, Jae K Lee, Roberta Brambilla

Abstract

Multiple sclerosis (MS) is a neuroimmune disorder characterized by inflammation, CNS demyelination, and progressive neurodegeneration. Chronic MS patients exhibit impaired remyelination capacity, partly due to the changes that oligodendrocyte precursor cells (OPCs) undergo in response to the MS lesion environment. The cytokine tumor necrosis factor (TNF) is present in the MS-affected CNS and has been implicated in disease pathophysiology. Of the two active forms of TNF, transmembrane (tmTNF) and soluble (solTNF), tmTNF signals via TNFR2 mediating protective and reparative effects, including remyelination, whereas solTNF signals predominantly via TNFR1 promoting neurotoxicity. To better understand the mechanisms underlying repair failure in MS, we investigated the cellular responses of OPCs to inflammatory exposure and the specific role of TNFR2 signaling in their modulation. Following treatment of cultured OPCs with IFNγ, IL1β, and TNF, we observed, by RNA sequencing, marked inflammatory and immune activation of OPCs, accompanied by metabolic changes and dysregulation of their proliferation and differentiation programming. We also established the high likelihood of cell-cell interaction between OPCs and microglia in neuroinflammatory conditions, with OPCs able to produce chemokines that can recruit and activate microglia. Importantly, we showed that these functions are exacerbated when TNFR2 is ablated. Together, our data indicate that neuroinflammation leads OPCs to shift towards an immunomodulatory phenotype while diminishing their capacity to proliferate and differentiate, thus impairing their repair function. Furthermore, we demonstrated that TNFR2 plays a key role in this process, suggesting that boosting TNFR2 activation or its downstream signals could be an effective strategy to restore OPC reparative capacity in demyelinating disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。